
Using GNU Make to Teach Undergraduates Neuroimaging Workflow
Tara Madhyastha1,3, Zoé Mestre3, Elliot Collins3, Thomas Grabowski1,2,3!

1Department of Radiology, 2Department of Neurology, 3Integrated Brain Imaging Center at the University of Washington

Motivation
• Study of neuroscience using neuroimaging attracts undergraduates

from diverse disciplines!
• Goal is to teach neuroimaging workflows and their potential use in

quantifying brain anatomy and function!
• Most students lack familiarity with Linux, bash shell scripting,

python, and parallelism

Approach
• Design workflows using GNU Make, a freeware utility that allows

one to specify how to create files from other files if they are out of
date!

• General form of a makefile:

Rationale
• Students can run complex pipelines using a common interface (e.g.,

“make freesurfer”) and see what commands are run, going from a
high level of abstraction to a lower one!

• Places emphasis on expressing logical workflow chains, less so on
programming constructs !

• Easy to modify existing workflows for specific purposes!
• Naturally expresses dependencies that are essential for

parallelization, making it possible for students to quickly write large
scale workflows that will run on a multicore workstation or cluster!

• Error recovery is automatic; the workflow will pick up where it left off
when stopped or recreate what has been deleted!

• Enforces good file naming and directory organization conventions

Process of Writing and Running a
Makefile Workflow

• Conceptualize targets and dependencies, normally within a subject
directory!

• Write and test rules on a single subject, in a text file called Makefile!
• Create targets, one by one, fixing problems as you go!
$ make target

• Run job in parallel on multicore machine!
$ make -j 8 target

• Or on cluster!
$ qmake -cwd -V -- -j 48 target

Teaching Students Neuroimaging
Workflow with Make
Basic Tasks!

• Run preexisting workflows, developed for running FreeSurfer, dti
analysis, tractography, white matter hyperintensity quantification,
feat, melodic denoising!

• Use make for interactive checking of images (e.g., editing white
matter control points in FreeSurfer or melodic denoising)!

• Use make in parallel for large jobs, some percent of which fail!
• Run through workflow to redo problematic steps by hand!
• Document problems and steps for solution!

Intermediate Tasks
• Extend existing workflow with some simple target (document as

appropriate)!
• Port existing workflow to new dataset or timepoint!

Advanced Tasks!
• Pick a task to automate, script it using some combination of

programming and makefiles!
• Document new workflow

Links
• We provide a manual for teaching and using make for basic

neuroimaging workflows:!
Using GNU Make for Neuroimaging Workflow:!
ibic.washington.edu/wiki!
The GNU Make manual is excellent:!
www.gnu.org/software/make/manual/

Acknowledgements
National Institutes of Health 1RC4NS073008-01

Zoé Mestre and former student research assistant appreciating the time saved
using make to check images with fslview

The recipe will rerun to recreate the target if the dependencies have changed!

RecipeRequired!
Tab indent

Dependencies!
The target will be recreated if the dependencies have changed

Target

s001_T1_skstrip.nii.gz: s001_T1.nii.gz

 bet s001_T1.nii.gz s001_T1_skstrip.nii.gz -R

Example 1. A very simple makefile.

T1files=$(wildcard s???_T1.nii.gz)
T1skullstrip=$(T1files:%_T1.nii.gz=%_T1_skstrip.nii.gz)
!
!
all: $(T1skullstrip)
!
!
%_T1_skstrip.nii.gz: %_T1.nii.gz
 bet $< $@ -R 

!
!
!
!
Example 2. A more realistic example. This makefile uses wildcards to obtain the

subject T1 images that the skull strips depends on, and pattern
substitution to avoid having to type out all the subjects. Writing this out
without pattern substitution is a useful exercise.

STD_BRAIN=/usr/share/fsl/5.0/data/standard/
MNI152_T1_2mm_brain.nii.gz
!
epi to T1 registration 
xfm_dir/epi2struct.mat: T1_skstrip.nii.gz MPRAGE.nii.gz
tsoc.nii.gz
 mkdir -p xfm_dir ;\ 
 epi_reg --epi=tsoc.nii.gz —t1=MPRAGE.nii.gz
--t1brain=T1_skstrip.nii.gz --out=xfm_dir/epi2struct 
 
T1 to std registration 
xfm_dir/struct2std.mat: T1_skstrip.nii.gz 
 mkdir -p xfm_dir ;\ 
 flirt -in $< -ref $(STD_BRAIN) -omat $@
-out xfm_dir/struct2std.nii.gz 
 
std to T1 matrix transform 
xfm_dir/std2struct.mat: xfm_dir/struct2std.mat
 mkdir -p xfm_dir ;\
 convert_xfm -omat $@ -inverse $< 
 
structural to epi registration 
xfm_dir/struct2epi.mat: xfm_dir/epi2struct.mat
 mkdir -p xfm_dir ;\
 convert_xfm -omat $@ -inverse $< 
 
standard to epi 
xfm_dir/std2epi.mat: xfm_dir/struct2epi.mat
xfm_dir/std2struct.mat
!
!
!
!
Example 3. Registrations. Note consistent naming conventions, use of multiple

registration tools

%! Matches a pattern!
$@! Is the target!
$<! Is the first dependency!
$(variable)! Is a make variable

http://ibic.washington.edu/wiki
http://www.gnu.org/software/make/manual/

